Earth-viewing satellite perspectives on the Chelyabinsk meteor event.

نویسندگان

  • Steven D Miller
  • William C Straka
  • A Scott Bachmeier
  • Timothy J Schmit
  • Philip T Partain
  • Yoo-Jeong Noh
چکیده

Large meteors (or superbolides [Ceplecha Z, et al. (1999) Meteoroids 1998:37-54]), although rare in recorded history, give sobering testimony to civilization's inherent vulnerability. A not-so-subtle reminder came on the morning of February 15, 2013, when a large meteoroid hurtled into the Earth's atmosphere, forming a superbolide near the city of Chelyabinsnk, Russia, ∼1,500 km east of Moscow, Russia [Ivanova MA, et al. (2013) Abstracts of the 76th Annual Meeting of the Meteoritical Society, 5366]. The object exploded in the stratosphere, and the ensuing shock wave blasted the city of Chelyabinsk, damaging structures and injuring hundreds. Details of trajectory are important for determining its specific source, the likelihood of future events, and potential mitigation measures. Earth-viewing environmental satellites can assist in these assessments. Here we examine satellite observations of the Chelyabinsk superbolide debris trail, collected within minutes of its entry. Estimates of trajectory are derived from differential views of the significantly parallax-displaced [e.g., Hasler AF (1981) Bull Am Meteor Soc 52:194-212] debris trail. The 282.7 ± 2.3° azimuth of trajectory, 18.5 ± 3.8° slope to the horizontal, and 17.7 ± 0.5 km/s velocity derived from these satellites agree well with parameters inferred from the wealth of surface-based photographs and amateur videos. More importantly, the results demonstrate the general ability of Earth-viewing satellites to provide valuable insight on trajectory reconstruction in the more likely scenario of sparse or nonexistent surface observations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jadeite in Chelyabinsk meteorite and the nature of an impact event on its parent body

The Chelyabinsk asteroid impact is the second largest asteroid airburst in our recorded history. To prepare for a potential threat from asteroid impacts, it is important to understand the nature and formational history of Near-Earth Objects (NEOs) like Chelyabinsk asteroid. In orbital evolution of an asteroid, collision with other asteroids is a key process. Here, we show the existence of a hig...

متن کامل

SSC00-IV-3 Leonid Meteor Observer in LEO: A University Microsatellite to Observe a Meteor Shower From Space

This paper presents university-based design and development of a micro-satellite for the observation of a meteor shower from the low Earth orbit. The satellite will be launched as a piggy-back payload of a commercial rocket launcher, a few weeks before the 2001 or 2002 Leonid meteor maximum in which thousands of meteors are scientifically expected. The goal of the mission is to conduct the scie...

متن کامل

Anisotropic reflection of UV radiation at the top of the atmosphere: Characteristics and models obtained from Meteor 3TOMS

Reflection of solar adiation usually exhibits a strong dependence on viewing geometry relative to the Sun's position. Such a dependence needs taking into account in remote sensing studies employing satellite measurements made with scanning radiometers. While many investigations have been conducted concerning the angular variation of radiation in the total solar, visible, and IR wavelengths, no ...

متن کامل

Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization.

The asteroid impact near the Russian city of Chelyabinsk on 15 February 2013 was the largest airburst on Earth since the 1908 Tunguska event, causing a natural disaster in an area with a population exceeding one million. Because it occurred in an era with modern consumer electronics, field sensors, and laboratory techniques, unprecedented measurements were made of the impact event and the meteo...

متن کامل

SWIMSat: Space Weather and Meteor Impact Monitoring using a Low-Cost 6U CubeSat

Networks of spacecraft are necessary to characterize and constantly monitor near-Earth threats such as Coronal Mass Ejections (CMEs) from the Sun, or impacts by large meteoroids. A network of CubeSat is ideally suited because of the low development cost and for demonstrating continuous monitoring of rare phenomena. In this paper, we describe the ongoing development of a single prototype spacecr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 45  شماره 

صفحات  -

تاریخ انتشار 2013